Vancouver Island
Privacy Ethics Alignment in AI: A Stakeholder-Centric Based Framework for Ethical AI
Barthwal, Ankur, Campbell, Molly, Shrestha, Ajay Kumar
The increasing integration of Artificial Intelligence (AI) in digital ecosystems has reshaped privacy dynamics, particularly for young digital citizens navigating data-driven environments. This study explores evolving privacy concerns across three key stakeholder groups, digital citizens (ages 16-19), parents/educators, and AI professionals, and assesses differences in data ownership, trust, transparency, parental mediation, education, and risk-benefit perceptions. Employing a grounded theory methodology, this research synthesizes insights from 482 participants through structured surveys, qualitative interviews, and focus groups. The findings reveal distinct privacy expectations: Young users emphasize autonomy and digital freedom, while parents and educators advocate for regulatory oversight and AI literacy programs. AI professionals, in contrast, prioritize the balance between ethical system design and technological efficiency. The data further highlights gaps in AI literacy and transparency, emphasizing the need for comprehensive, stakeholder-driven privacy frameworks that accommodate diverse user needs. Using comparative thematic analysis, this study identifies key tensions in privacy governance and develops the novel Privacy-Ethics Alignment in AI (PEA-AI) model, which structures privacy decision-making as a dynamic negotiation between stakeholders. By systematically analyzing themes such as transparency, user control, risk perception, and parental mediation, this research provides a scalable, adaptive foundation for AI governance, ensuring that privacy protections evolve alongside emerging AI technologies and youth-centric digital interactions.
Assessing LLMs for Front-end Software Architecture Knowledge
Guerra, L. P. Franciscatto, Ernst, N.
Large Language Models (LLMs) have demonstrated significant promise in automating software development tasks, yet their capabilities with respect to software design tasks remains largely unclear. This study investigates the capabilities of an LLM in understanding, reproducing, and generating structures within the complex VIPER architecture, a design pattern for iOS applications. We leverage Bloom's taxonomy to develop a comprehensive evaluation framework to assess the LLM's performance across different cognitive domains such as remembering, understanding, applying, analyzing, evaluating, and creating. Experimental results, using ChatGPT 4 Turbo 2024-04-09, reveal that the LLM excelled in higher-order tasks like evaluating and creating, but faced challenges with lower-order tasks requiring precise retrieval of architectural details. These findings highlight both the potential of LLMs to reduce development costs and the barriers to their effective application in real-world software design scenarios. This study proposes a benchmark format for assessing LLM capabilities in software architecture, aiming to contribute toward more robust and accessible AI-driven development tools.
Investigation of the Privacy Concerns in AI Systems for Young Digital Citizens: A Comparative Stakeholder Analysis
Campbell, Molly, Barthwal, Ankur, Joshi, Sandhya, Shouli, Austin, Shrestha, Ajay Kumar
The integration of Artificial Intelligence (AI) systems into technologies used by young digital citizens raises significant privacy concerns. This study investigates these concerns through a comparative analysis of stakeholder perspectives. A total of 252 participants were surveyed, with the analysis focusing on 110 valid responses from parents/educators and 100 from AI professionals after data cleaning. Quantitative methods, including descriptive statistics and Partial Least Squares Structural Equation Modeling, examined five validated constructs: Data Ownership and Control, Parental Data Sharing, Perceived Risks and Benefits, Transparency and Trust, and Education and Awareness. Results showed Education and Awareness significantly influenced data ownership and risk assessment, while Data Ownership and Control strongly impacted Transparency and Trust. Transparency and Trust, along with Perceived Risks and Benefits, showed minimal influence on Parental Data Sharing, suggesting other factors may play a larger role. The study underscores the need for user-centric privacy controls, tailored transparency strategies, and targeted educational initiatives. Incorporating diverse stakeholder perspectives offers actionable insights into ethical AI design and governance, balancing innovation with robust privacy protections to foster trust in a digital age.
Toward Ethical AI: A Qualitative Analysis of Stakeholder Perspectives
Shrestha, Ajay Kumar, Joshi, Sandhya
As Artificial Intelligence (AI) systems become increasingly integrated into various aspects of daily life, concerns about privacy and ethical accountability are gaining prominence. This study explores stakeholder perspectives on privacy in AI systems, focusing on educators, parents, and AI professionals. Using qualitative analysis of survey responses from 227 participants, the research identifies key privacy risks, including data breaches, ethical misuse, and excessive data collection, alongside perceived benefits such as personalized services, enhanced efficiency, and educational advancements. Stakeholders emphasized the need for transparency, privacy-by-design, user empowerment, and ethical oversight to address privacy concerns effectively. The findings provide actionable insights into balancing the benefits of AI with robust privacy protections, catering to the diverse needs of stakeholders. Recommendations include implementing selective data use, fostering transparency, promoting user autonomy, and integrating ethical principles into AI development. This study contributes to the ongoing discourse on ethical AI, offering guidance for designing privacy-centric systems that align with societal values and build trust among users. By addressing privacy challenges, this research underscores the importance of developing AI technologies that are not only innovative but also ethically sound and responsive to the concerns of all stakeholders.
Human Latency Conversational Turns for Spoken Avatar Systems
Jacoby, Derek, Zhang, Tianyi, Mohan, Aanchan, Coady, Yvonne
A problem with many current Large Language Model (LLM) driven spoken dialogues is the response time. Some efforts such as Groq address this issue by lightning fast processing of the LLM, but we know from the cognitive psychology literature that in human-to-human dialogue often responses occur prior to the speaker completing their utterance. No amount of delay for LLM processing is acceptable if we wish to maintain human dialogue latencies. In this paper, we discuss methods for understanding an utterance in close to real time and generating a response so that the system can comply with human-level conversational turn delays. This means that the information content of the final part of the speaker's utterance is lost to the LLM. Using the Google NaturalQuestions (NQ) database, our results show GPT-4 can effectively fill in missing context from a dropped word at the end of a question over 60% of the time. We also provide some examples of utterances and the impacts of this information loss on the quality of LLM response in the context of an avatar that is currently under development. These results indicate that a simple classifier could be used to determine whether a question is semantically complete, or requires a filler phrase to allow a response to be generated within human dialogue time constraints.
Evaluating the Determinants of Mode Choice Using Statistical and Machine Learning Techniques in the Indian Megacity of Bengaluru
Ghosh, Tanmay, Nagaraj, Nithin
The decision making involved behind the mode choice is critical for transportation planning. While statistical learning techniques like discrete choice models have been used traditionally, machine learning (ML) models have gained traction recently among the transportation planners due to their higher predictive performance. However, the black box nature of ML models pose significant interpretability challenges, limiting their practical application in decision and policy making. This study utilised a dataset of $1350$ households belonging to low and low-middle income bracket in the city of Bengaluru to investigate mode choice decision making behaviour using Multinomial logit model and ML classifiers like decision trees, random forests, extreme gradient boosting and support vector machines. In terms of accuracy, random forest model performed the best ($0.788$ on training data and $0.605$ on testing data) compared to all the other models. This research has adopted modern interpretability techniques like feature importance and individual conditional expectation plots to explain the decision making behaviour using ML models. A higher travel costs significantly reduce the predicted probability of bus usage compared to other modes (a $0.66\%$ and $0.34\%$ reduction using Random Forests and XGBoost model for $10\%$ increase in travel cost). However, reducing travel time by $10\%$ increases the preference for the metro ($0.16\%$ in Random Forests and 0.42% in XGBoost). This research augments the ongoing research on mode choice analysis using machine learning techniques, which would help in improving the understanding of the performance of these models with real-world data in terms of both accuracy and interpretability.
Fuel Consumption Prediction for a Passenger Ferry using Machine Learning and In-service Data: A Comparative Study
Agand, Pedram, Kennedy, Allison, Harris, Trevor, Bae, Chanwoo, Chen, Mo, Park, Edward J
As the importance of eco-friendly transportation increases, providing an efficient approach for marine vessel operation is essential. Methods for status monitoring with consideration to the weather condition and forecasting with the use of in-service data from ships requires accurate and complete models for predicting the energy efficiency of a ship. The models need to effectively process all the operational data in real-time. This paper presents models that can predict fuel consumption using in-service data collected from a passenger ship. Statistical and domain-knowledge methods were used to select the proper input variables for the models. These methods prevent over-fitting, missing data, and multicollinearity while providing practical applicability. Prediction models that were investigated include multiple linear regression (MLR), decision tree approach (DT), an artificial neural network (ANN), and ensemble methods. The best predictive performance was from a model developed using the XGboost technique which is a boosting ensemble approach. \rvv{Our code is available on GitHub at \url{https://github.com/pagand/model_optimze_vessel/tree/OE} for future research.
Multi-Stage Graph Peeling Algorithm for Probabilistic Core Decomposition
Guo, Yang, Zhang, Xuekui, Esfahani, Fatemeh, Srinivasan, Venkatesh, Thomo, Alex, Xing, Li
Mining dense subgraphs where vertices connect closely with each other is a common task when analyzing graphs. A very popular notion in subgraph analysis is core decomposition. Recently, Esfahani et al. presented a probabilistic core decomposition algorithm based on graph peeling and Central Limit Theorem (CLT) that is capable of handling very large graphs. Their proposed peeling algorithm (PA) starts from the lowest degree vertices and recursively deletes these vertices, assigning core numbers, and updating the degree of neighbour vertices until it reached the maximum core. However, in many applications, particularly in biology, more valuable information can be obtained from dense sub-communities and we are not interested in small cores where vertices do not interact much with others. To make the previous PA focus more on dense subgraphs, we propose a multi-stage graph peeling algorithm (M-PA) that has a two-stage data screening procedure added before the previous PA. After removing vertices from the graph based on the user-defined thresholds, we can reduce the graph complexity largely and without affecting the vertices in subgraphs that we are interested in. We show that M-PA is more efficient than the previous PA and with the properly set filtering threshold, can produce very similar if not identical dense subgraphs to the previous PA (in terms of graph density and clustering coefficient).
Batter up! EA Sports gets back into baseball video games with 'Super Mega Baseball' studio deal
EA Sports has made an acquisition that gets it back into baseball video games. The sports game division of Electronic Arts is adding to its lineup Metalhead Software, a Victoria, British Columbia, studio that makes Super Mega Baseball video games. "Super Mega Baseball 3," released in March 2020, has an arcade look, but "it's a really well-made game," EA Sports executive vice president and general manager Cam Weber told USA TODAY. It plays like a simulation under the hood. One of the largest video game publishers in the U.S., EA posted revenue of $5.5 billion in fiscal year 2020.
AIBA: An AI Model for Behavior Arbitration in Autonomous Driving
Trasnea, Bogdan, pozna, Claudiu, Grigorescu, Sorin
Driving in dynamically changing traffic is a highly challenging task for autonomous vehicles, especially in crowded urban roadways. The Artificial Intelligence (AI) system of a driverless car must be able to arbitrate between different driving strategies in order to properly plan the car's path, based on an understandable traffic scene model. In this paper, an AI behavior arbitration algorithm for Autonomous Driving (AD) is proposed. The method, coined AIBA (AI Behavior Arbitration), has been developed in two stages: (i) human driving scene description and understanding and (ii) formal modelling. The description of the scene is achieved by mimicking a human cognition model, while the modelling part is based on a formal representation which approximates the human driver understanding process. The advantage of the formal representation is that the functional safety of the system can be analytically inferred. The performance of the algorithm has been evaluated in Virtual Test Drive (VTD), a comprehensive traffic simulator, and in GridSim, a vehicle kinematics engine for prototypes.